1. Class基本语法
概述
JavaScript语言的传统方法是通过构造函数,定义并生成新对象。下面是一个例子。
上面这种写法跟传统的面向对象语言(比如C++和Java)差异很大,很容易让新学习这门语言的程序员感到困惑。
ES6提供了更接近传统语言的写法,引入了Class(类)这个概念,作为对象的模板。通过class关键字,可以定义类。基本上,ES6的class可以看作只是一个语法糖,它的绝大部分功能,ES5都可以做到,新的class写法只是让对象原型的写法更加清晰、更像面向对象编程的语法而已。上面的代码用ES6的“类”改写,就是下面这样。
上面代码定义了一个“类”,可以看到里面有一个constructor方法,这就是构造方法,而this关键字则代表实例对象。也就是说,ES5的构造函数Point,对应ES6的Point类的构造方法。
Point类除了构造方法,还定义了一个toString方法。注意,定义“类”的方法的时候,前面不需要加上function这个关键字,直接把函数定义放进去了就可以了。另外,方法之间不需要逗号分隔,加了会报错。
ES6的类,完全可以看作构造函数的另一种写法。
上面代码表明,类的数据类型就是函数,类本身就指向构造函数。
使用的时候,也是直接对类使用new命令,跟构造函数的用法完全一致。
构造函数的prototype属性,在ES6的“类”上面继续存在。事实上,类的所有方法都定义在类的prototype属性上面。
在类的实例上面调用方法,其实就是调用原型上的方法。
上面代码中,b是B类的实例,它的constructor方法就是B类原型的constructor方法。
由于类的方法都定义在prototype对象上面,所以类的新方法可以添加在prototype对象上面。Object.assign方法可以很方便地一次向类添加多个方法。
prototype对象的constructor属性,直接指向“类”的本身,这与ES5的行为是一致的。
另外,类的内部所有定义的方法,都是不可枚举的(non-enumerable)。
上面代码中,toString方法是Point类内部定义的方法,它是不可枚举的。这一点与ES5的行为不一致。
上面代码采用ES5的写法,toString方法就是可枚举的。
类的属性名,可以采用表达式。
上面代码中,Square类的方法名getArea,是从表达式得到的。
constructor方法
constructor方法是类的默认方法,通过new命令生成对象实例时,自动调用该方法。一个类必须有constructor方法,如果没有显式定义,一个空的constructor方法会被默认添加。
constructor方法默认返回实例对象(即this),完全可以指定返回另外一个对象。
上面代码中,constructor函数返回一个全新的对象,结果导致实例对象不是Foo类的实例。
类的构造函数,不使用new是没法调用的,会报错。这是它跟普通构造函数的一个主要区别,后者不用new也可以执行。
类的实例对象
生成类的实例对象的写法,与ES5完全一样,也是使用new命令。如果忘记加上new,像函数那样调用Class,将会报错。
与ES5一样,实例的属性除非显式定义在其本身(即定义在this对象上),否则都是定义在原型上(即定义在class上)。
上面代码中,x和y都是实例对象point自身的属性(因为定义在this变量上),所以hasOwnProperty方法返回true,而toString是原型对象的属性(因为定义在Point类上),所以hasOwnProperty方法返回false。这些都与ES5的行为保持一致。
与ES5一样,类的所有实例共享一个原型对象。
上面代码中,p1和p2都是Point的实例,它们的原型都是Point.prototype,所以__proto__属性是相等的。
这也意味着,可以通过实例的__proto__属性为Class添加方法。
上面代码在p1的原型上添加了一个printName方法,由于p1的原型就是p2的原型,因此p2也可以调用这个方法。而且,此后新建的实例p3也可以调用这个方法。这意味着,使用实例的__proto__属性改写原型,必须相当谨慎,不推荐使用,因为这会改变Class的原始定义,影响到所有实例。
不存在变量提升
Class不存在变量提升(hoist),这一点与ES5完全不同。
上面代码中,Foo类使用在前,定义在后,这样会报错,因为ES6不会把类的声明提升到代码头部。这种规定的原因与下文要提到的继承有关,必须保证子类在父类之后定义。
上面的代码不会报错,因为Bar继承Foo的时候,Foo已经有定义了。但是,如果存在class的提升,上面代码就会报错,因为class会被提升到代码头部,而let命令是不提升的,所以导致Bar继承Foo的时候,Foo还没有定义。
Class表达式
与函数一样,类也可以使用表达式的形式定义。
上面代码使用表达式定义了一个类。需要注意的是,这个类的名字是MyClass而不是Me,Me只在Class的内部代码可用,指代当前类。
上面代码表示,Me只在Class内部有定义。
如果类的内部没用到的话,可以省略Me,也就是可以写成下面的形式。
采用Class表达式,可以写出立即执行的Class。
上面代码中,person是一个立即执行的类的实例。
私有方法
私有方法是常见需求,但 ES6 不提供,只能通过变通方法模拟实现。
一种做法是在命名上加以区别。
上面代码中,_bar方法前面的下划线,表示这是一个只限于内部使用的私有方法。但是,这种命名是不保险的,在类的外部,还是可以调用到这个方法。
另一种方法就是索性将私有方法移出模块,因为模块内部的所有方法都是对外可见的。
上面代码中,foo是公有方法,内部调用了bar.call(this, baz)。这使得bar实际上成为了当前模块的私有方法。
还有一种方法是利用Symbol值的唯一性,将私有方法的名字命名为一个Symbol值。
上面代码中,bar和snaf都是Symbol值,导致第三方无法获取到它们,因此达到了私有方法和私有属性的效果。
this的指向
类的方法内部如果含有this,它默认指向类的实例。但是,必须非常小心,一旦单独使用该方法,很可能报错。
上面代码中,printName方法中的this,默认指向Logger类的实例。但是,如果将这个方法提取出来单独使用,this会指向该方法运行时所在的环境,因为找不到print方法而导致报错。
一个比较简单的解决方法是,在构造方法中绑定this,这样就不会找不到print方法了。
另一种解决方法是使用箭头函数。
还有一种解决方法是使用Proxy,获取方法的时候,自动绑定this。
严格模式
类和模块的内部,默认就是严格模式,所以不需要使用use strict指定运行模式。只要你的代码写在类或模块之中,就只有严格模式可用。
考虑到未来所有的代码,其实都是运行在模块之中,所以ES6实际上把整个语言升级到了严格模式。
name属性
由于本质上,ES6的类只是ES5的构造函数的一层包装,所以函数的许多特性都被Class继承,包括name属性。
name属性总是返回紧跟在class关键字后面的类名。
2. Class的继承
基本用法
Class之间可以通过extends关键字实现继承,这比ES5的通过修改原型链实现继承,要清晰和方便很多。
上面代码定义了一个ColorPoint类,该类通过extends关键字,继承了Point类的所有属性和方法。但是由于没有部署任何代码,所以这两个类完全一样,等于复制了一个Point类。下面,我们在ColorPoint内部加上代码。
上面代码中,constructor方法和toString方法之中,都出现了super关键字,它在这里表示父类的构造函数,用来新建父类的this对象。
子类必须在constructor方法中调用super方法,否则新建实例时会报错。这是因为子类没有自己的this对象,而是继承父类的this对象,然后对其进行加工。如果不调用super方法,子类就得不到this对象。
上面代码中,ColorPoint继承了父类Point,但是它的构造函数没有调用super方法,导致新建实例时报错。
ES5的继承,实质是先创造子类的实例对象this,然后再将父类的方法添加到this上面(Parent.apply(this))。ES6的继承机制完全不同,实质是先创造父类的实例对象this(所以必须先调用super方法),然后再用子类的构造函数修改this。
如果子类没有定义constructor方法,这个方法会被默认添加,代码如下。也就是说,不管有没有显式定义,任何一个子类都有constructor方法。
另一个需要注意的地方是,在子类的构造函数中,只有调用super之后,才可以使用this关键字,否则会报错。这是因为子类实例的构建,是基于对父类实例加工,只有super方法才能返回父类实例。
上面代码中,子类的constructor方法没有调用super之前,就使用this关键字,结果报错,而放在super方法之后就是正确的。
下面是生成子类实例的代码。
上面代码中,实例对象cp同时是ColorPoint和Point两个类的实例,这与ES5的行为完全一致。
类的prototype属性和__proto__属性
大多数浏览器的ES5实现之中,每一个对象都有__proto__属性,指向对应的构造函数的prototype属性。Class作为构造函数的语法糖,同时有prototype属性和__proto__属性,因此同时存在两条继承链。
(1)子类的__proto__属性,表示构造函数的继承,总是指向父类。
(2)子类prototype属性的__proto__属性,表示方法的继承,总是指向父类的prototype属性。
上面代码中,子类B的__proto__属性指向父类A,子类B的prototype属性的__proto__属性指向父类A的prototype属性。
这样的结果是因为,类的继承是按照下面的模式实现的。
《对象的扩展》一章给出过Object.setPrototypeOf方法的实现。
因此,就得到了上面的结果。
这两条继承链,可以这样理解:作为一个对象,子类(B)的原型(__proto__属性)是父类(A);作为一个构造函数,子类(B)的原型(prototype属性)是父类的实例。
Extends 的继承目标
extends关键字后面可以跟多种类型的值。
上面代码的A,只要是一个有prototype属性的函数,就能被B继承。由于函数都有prototype属性(除了Function.prototype函数),因此A可以是任意函数。
下面,讨论三种特殊情况。
第一种特殊情况,子类继承Object类。
这种情况下,A其实就是构造函数Object的复制,A的实例就是Object的实例。
第二种特殊情况,不存在任何继承。
这种情况下,A作为一个基类(即不存在任何继承),就是一个普通函数,所以直接继承Funciton.prototype。但是,A调用后返回一个空对象(即Object实例),所以A.prototype.__proto__指向构造函数(Object)的prototype属性。
第三种特殊情况,子类继承null。
这种情况与第二种情况非常像。A也是一个普通函数,所以直接继承Funciton.prototype。但是,A调用后返回的对象不继承任何方法,所以它的__proto__指向Function.prototype,即实质上执行了下面的代码。
Object.getPrototypeOf()
Object.getPrototypeOf方法可以用来从子类上获取父类。
因此,可以使用这个方法判断,一个类是否继承了另一个类。
super 关键字
super这个关键字,既可以当作函数使用,也可以当作对象使用。在这两种情况下,它的用法完全不同。
第一种情况,super作为函数调用时,代表父类的构造函数。ES6 要求,子类的构造函数必须执行一次super函数。
上面代码中,子类B的构造函数之中的super(),代表调用父类的构造函数。这是必须的,否则 JavaScript 引擎会报错。
注意,super虽然代表了父类A的构造函数,但是返回的是子类B的实例,即super内部的this指的是B,因此super()在这里相当于A.prototype.constructor.call(this)。
上面代码中,new.target指向当前正在执行的函数。可以看到,在super()执行时,它指向的是子类B的构造函数,而不是父类A的构造函数。也就是说,super()内部的this指向的是B。
作为函数时,super()只能用在子类的构造函数之中,用在其他地方就会报错。
上面代码中,super()用在B类的m方法之中,就会造成句法错误。
第二种情况,super作为对象时,在普通方法中,指向父类的原型对象;在静态方法中,指向父类。
上面代码中,子类B当中的super.p(),就是将super当作一个对象使用。这时,super在普通方法之中,指向A.prototype,所以super.p()就相当于A.prototype.p()。
这里需要注意,由于super指向父类的原型对象,所以定义在父类实例上的方法或属性,是无法通过super调用的。
上面代码中,p是父类A实例的属性,super.p就引用不到它。
如果属性定义在父类的原型对象上,super就可以取到。
上面代码中,属性x是定义在A.prototype上面的,所以super.x可以取到它的值。
ES6 规定,通过super调用父类的方法时,super会绑定子类的this。
上面代码中,super.print()虽然调用的是A.prototype.print(),但是A.prototype.print()会绑定子类B的this,导致输出的是2,而不是1。也就是说,实际上执行的是super.print.call(this)。
由于绑定子类的this,所以如果通过super对某个属性赋值,这时super就是this,赋值的属性会变成子类实例的属性。
上面代码中,super.x赋值为3,这时等同于对this.x赋值为3。而当读取super.x的时候,读的是A.prototype.x,所以返回undefined。
如果super作为对象,用在静态方法之中,这时super将指向父类,而不是父类的原型对象。
上面代码中,super在静态方法之中指向父类,在普通方法之中指向父类的原型对象。
注意,使用super的时候,必须显式指定是作为函数、还是作为对象使用,否则会报错。
上面代码中,console.log(super)当中的super,无法看出是作为函数使用,还是作为对象使用,所以 JavaScript 引擎解析代码的时候就会报错。这时,如果能清晰地表明super的数据类型,就不会报错。
上面代码中,super.valueOf()表明super是一个对象,因此就不会报错。同时,由于super绑定B的this,所以super.valueOf()返回的是一个B的实例。
最后,由于对象总是继承其他对象的,所以可以在任意一个对象中,使用super关键字。
实例的__proto__属性
子类实例的__proto__属性的__proto__属性,指向父类实例的__proto__属性。也就是说,子类的原型的原型,是父类的原型。
上面代码中,ColorPoint继承了Point,导致前者原型的原型是后者的原型。
因此,通过子类实例的__proto__.__proto__属性,可以修改父类实例的行为。
上面代码在ColorPoint的实例p2上向Point类添加方法,结果影响到了Point的实例p1。
3. 原生构造函数的继承
原生构造函数是指语言内置的构造函数,通常用来生成数据结构。ECMAScript的原生构造函数大致有下面这些。
Boolean()
Number()
String()
Array()
Date()
Function()
RegExp()
Error()
Object()
以前,这些原生构造函数是无法继承的,比如,不能自己定义一个Array的子类。
上面代码定义了一个继承Array的MyArray类。但是,这个类的行为与Array完全不一致。
之所以会发生这种情况,是因为子类无法获得原生构造函数的内部属性,通过Array.apply()或者分配给原型对象都不行。原生构造函数会忽略apply方法传入的this,也就是说,原生构造函数的this无法绑定,导致拿不到内部属性。
ES5是先新建子类的实例对象this,再将父类的属性添加到子类上,由于父类的内部属性无法获取,导致无法继承原生的构造函数。比如,Array构造函数有一个内部属性[[DefineOwnProperty]],用来定义新属性时,更新length属性,这个内部属性无法在子类获取,导致子类的length属性行为不正常。
下面的例子中,我们想让一个普通对象继承Error对象。
上面代码中,我们想通过Error.call(e)这种写法,让普通对象e具有Error对象的实例属性。但是,Error.call()完全忽略传入的第一个参数,而是返回一个新对象,e本身没有任何变化。这证明了Error.call(e)这种写法,无法继承原生构造函数。
ES6允许继承原生构造函数定义子类,因为ES6是先新建父类的实例对象this,然后再用子类的构造函数修饰this,使得父类的所有行为都可以继承。下面是一个继承Array的例子。
上面代码定义了一个MyArray类,继承了Array构造函数,因此就可以从MyArray生成数组的实例。这意味着,ES6可以自定义原生数据结构(比如Array、String等)的子类,这是ES5无法做到的。
上面这个例子也说明,extends关键字不仅可以用来继承类,还可以用来继承原生的构造函数。因此可以在原生数据结构的基础上,定义自己的数据结构。下面就是定义了一个带版本功能的数组。
上面代码中,VersionedArray结构会通过commit方法,将自己的当前状态存入history属性,然后通过revert方法,可以撤销当前版本,回到上一个版本。除此之外,VersionedArray依然是一个数组,所有原生的数组方法都可以在它上面调用。
下面是一个自定义Error子类的例子。
注意,继承Object的子类,有一个行为差异。
上面代码中,NewObj继承了Object,但是无法通过super方法向父类Object传参。这是因为ES6改变了Object构造函数的行为,一旦发现Object方法不是通过new Object()这种形式调用,ES6规定Object构造函数会忽略参数。
4. Class的取值函数(getter)和存值函数(setter)
与ES5一样,在Class内部可以使用get和set关键字,对某个属性设置存值函数和取值函数,拦截该属性的存取行为。
上面代码中,prop属性有对应的存值函数和取值函数,因此赋值和读取行为都被自定义了。
存值函数和取值函数是设置在属性的descriptor对象上的。
上面代码中,存值函数和取值函数是定义在html属性的描述对象上面,这与ES5完全一致。
5. Class 的 Generator 方法
如果某个方法之前加上星号(*),就表示该方法是一个 Generator 函数。
上面代码中,Foo类的Symbol.iterator方法前有一个星号,表示该方法是一个 Generator 函数。Symbol.iterator方法返回一个Foo类的默认遍历器,for…of循环会自动调用这个遍历器。
6. Class 的静态方法
类相当于实例的原型,所有在类中定义的方法,都会被实例继承。如果在一个方法前,加上static关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”。
上面代码中,Foo类的classMethod方法前有static关键字,表明该方法是一个静态方法,可以直接在Foo类上调用(Foo.classMethod()),而不是在Foo类的实例上调用。如果在实例上调用静态方法,会抛出一个错误,表示不存在该方法。
父类的静态方法,可以被子类继承。
上面代码中,父类Foo有一个静态方法,子类Bar可以调用这个方法。
静态方法也是可以从super对象上调用的。
7. Class的静态属性和实例属性
静态属性指的是Class本身的属性,即Class.propname,而不是定义在实例对象(this)上的属性。
上面的写法为Foo类定义了一个静态属性prop。
目前,只有这种写法可行,因为ES6明确规定,Class内部只有静态方法,没有静态属性。
ES7有一个静态属性的提案,目前Babel转码器支持。
这个提案对实例属性和静态属性,都规定了新的写法。
(1)类的实例属性
类的实例属性可以用等式,写入类的定义之中。
上面代码中,myProp就是MyClass的实例属性。在MyClass的实例上,可以读取这个属性。
以前,我们定义实例属性,只能写在类的constructor方法里面。
上面代码中,构造方法constructor里面,定义了this.state属性。
有了新的写法以后,可以不在constructor方法里面定义。
这种写法比以前更清晰。
为了可读性的目的,对于那些在constructor里面已经定义的实例属性,新写法允许直接列出。
(2)类的静态属性
类的静态属性只要在上面的实例属性写法前面,加上static关键字就可以了。
同样的,这个新写法大大方便了静态属性的表达。
上面代码中,老写法的静态属性定义在类的外部。整个类生成以后,再生成静态属性。这样让人很容易忽略这个静态属性,也不符合相关代码应该放在一起的代码组织原则。另外,新写法是显式声明(declarative),而不是赋值处理,语义更好。
8. 类的私有属性
目前,有一个提案,为class加了私有属性。方法是在属性名之前,使用#表示。
上面代码中,#x就表示私有属性x,在Point类之外是读取不到这个属性的。还可以看到,私有属性与实例的属性是可以同名的(比如,#x与get x())。
私有属性可以指定初始值,在构造函数执行时进行初始化。
之所以要引入一个新的前缀#表示私有属性,而没有采用private关键字,是因为 JavaScript 是一门动态语言,使用独立的符号似乎是唯一的可靠方法,能够准确地区分一种属性是私有属性。另外,Ruby 语言使用@表示私有属性,ES6 没有用这个符号而使用#,是因为@已经被留给了 Decorator。
该提案只规定了私有属性的写法。但是,很自然地,它也可以用来写私有方法。
9. new.target属性
new是从构造函数生成实例的命令。ES6为new命令引入了一个new.target属性,(在构造函数中)返回new命令作用于的那个构造函数。如果构造函数不是通过new命令调用的,new.target会返回undefined,因此这个属性可以用来确定构造函数是怎么调用的。
上面代码确保构造函数只能通过new命令调用。
Class内部调用new.target,返回当前Class。
需要注意的是,子类继承父类时,new.target会返回子类。
上面代码中,new.target会返回子类。
利用这个特点,可以写出不能独立使用、必须继承后才能使用的类。
上面代码中,Shape类不能被实例化,只能用于继承。
注意,在函数外部,使用new.target会报错。
10. Mixin模式的实现
Mixin模式指的是,将多个类的接口“混入”(mix in)另一个类。它在ES6的实现如下。
上面代码的mix函数,可以将多个对象合成为一个类。使用的时候,只要继承这个类即可。